• Москва, м. Комсомольская, Комсомольская площадь, д. 1а, строение 15.
  • kontakt@konzeptual.ru

Ваша корзина пуста!

Глубокое обучение с подкреплением на Python. OpenAI Gym и TensorFlow для профи

Судхарсан Равичандиран

Глубокое обучение с подкреплением (Reinforcement Learning) — самое популярное и перспективное направление искусственного интеллекта. Практическое изучение RL на Python поможет освоить не только базовые, но и передовые алгоритмы глубокого обучения с подкреплением. Вы начнете с основных принципов обучения с подкреплением, OpenAI Gym и TensorFlow, познакомьтесь с марковскими цепями, методом Монте-Карло и динамическим программированием, так что «страшные» аббревиатуры DQN, DRQN, A3C, PPO и TRPO вскоре перестанут вас пугать. Вы узнаете об агентах, которые учатся на человеческих предпочтениях, DQfD, HER и многих других последних достижениях RL. Прочитав книгу, вы приобретете знания и опыт, необходимые для реализации обучения с подкреплением и глубокого обучения с подкреплением в реальных проектах, и войдете в мир искусственного интеллекта. В этой книге вы: • Познакомитесь с основами методов, алгоритмов и элементов RL • Обучите агента с помощью OpenAI Gym и Tensorflow • Освоите марковские процессы принятия решений, оптимальность Беллмана и обучение TD • Научитесь решать проблемы многоруких бандитов • Овладеете алгоритмами глубокого обучения, такими как RNN, LSTM и CNN • Создадите интеллектуальных агентов с помощью алгоритма DRQN, которые смогут играть в Doom • С помощью DDPG научите агентов играть в Lunar Lander • Отправите агента на автогонки, используя метод DQN


Год издания - 2020

Переплёт - Мягкий

Количество страниц - 320

Возрастные ограничения - 16+

Ширина - 16,5

Толщина - 1,5

Глубокое обучение с подкреплением на Python. OpenAI Gym и TensorFlow для профи
4 1090 1090
  4
Глубокое обучение с подкреплением (Reinforcement Learning) — самое популярное и перспективное направление искусственного интеллекта. Практическое изучение RL на Python поможет освоить не только базовые, но и передовые алгоритмы глубокого обучения с подкреплением. Вы начнете с основных принципов обучения с подкреплением, OpenAI Gym и TensorFlow, познакомьтесь с марковскими цепями, методом Монте-Карло и динамическим программированием, так что «страшные» аббревиатуры DQN, DRQN, A3C, PPO и TRPO вскоре перестанут вас пугать. Вы узнаете об агентах, которые учатся на человеческих предпочтениях, DQfD, HER и многих других последних достижениях RL. Прочитав книгу, вы приобретете знания и опыт, необходимые для реализации обучения с подкреплением и глубокого обучения с подкреплением в реальных проектах, и войдете в мир искусственного интеллекта. В этой книге вы: • Познакомитесь с основами методов, алгоритмов и элементов RL • Обучите агента с помощью OpenAI Gym и Tensorflow • Освоите марковские процессы принятия решений, оптимальность Беллмана и обучение TD • Научитесь решать проблемы многоруких бандитов • Овладеете алгоритмами глубокого обучения, такими как RNN, LSTM и CNN • Создадите интеллектуальных агентов с помощью алгоритма DRQN, которые смогут играть в Doom • С помощью DDPG научите агентов играть в Lunar Lander • Отправите агента на автогонки, используя метод DQN
Автор Судхарсан Равичандиран
Издательство Прогресс книга
Год издания 2020
Переплёт Мягкий
Количество страниц 320
Типографский формат 70х100/16
ISBN 978-5-4461-1251-7
Возрастные ограничения 16+
Высота, см 23,3
Ширина, см 16,5
Толщина 1,5

Написать отзыв

С этим также покупают