• Москва, м. Комсомольская, Комсомольская площадь, д. 1а, строение 15.
  • kontakt@konzeptual.ru

Ваша корзина пуста!

Data mining. Извлечение информации из Facebook, Twitter, LinkedIn, Instagram, GitHub

Мэтью Рассел, Михаил Классен

В недрах популярных социальных сетей — Twitter, Facebook, LinkedIn и Instagram — скрыты богатейшие залежи информации. Из этой книги исследователи, аналитики и разработчики узнают, как извлекать эти уникальные данные, используя код на Python, Jupyter Notebook или контейнеры Docker. Сначала вы познакомитесь с функционалом самых популярных социальных сетей (Twitter, Facebook, LinkedIn, Instagram), веб-страниц, блогов и лент, электронной почты и GitHub. Затем приступите к анализу данных на примере Twitter. Прочитайте эту книгу, чтобы • Узнать о современном ландшафте социальных сетей • Научиться использовать Docker, чтобы легко оперировать кодами, приведенными в книге; • Узнать, как адаптировать и поставлять код в открытый репозиторий GitHub; • Научиться анализировать собираемые данные с использованием возможностей Python 3; • Освоить продвинутые приемы анализа, такие как TFIDF, косинусное сходство, анализ словосочетаний, определение клика и распознавание образов; • Узнать, как создавать красивые визуализации данных с помощью Python и JavaScript. Мэтью Рассел (Matthew Russell) — директор Built Technologies, он возглавляет команду лидеров, работающую над улучшением нашего мира. Вне работы Мэтью рациональный индивидуалист, готовящийся к возможному зомби-апокалипсису. Михаил Классен (Mikhail Klassen) — главный специалист по обработке и анализу данных в Paladin AI, стартапе, занимающемуся адаптивными технологиями обучения. Он увлекается проблемами искусственного интеллекта и анализом данных. Когда Михаил не занят на работе, он любит читать и путешествовать.


Год издания - 2020

Переплёт - Мягкий

Количество страниц - 464

Возрастные ограничения - 12+

Ширина - 16,5

Толщина - 2,1

Data mining. Извлечение информации из Facebook, Twitter, LinkedIn, Instagram, GitHub
2 1285 1285
  2

Доставка по Москве :

Самовывоз

Курьером (в пределах МКАД) 350 р.

Доставка в регионы :

Почтой России. Сроки доставки зависят от удалённости региона, обычно — в течение 1−3 недель

Через пункты выдачи заказов Boxberry. Срок доставки - от 4 до 14 дней (срок может быть увеличен из-за дальности региона, а также в предпраздничное время)

В недрах популярных социальных сетей — Twitter, Facebook, LinkedIn и Instagram — скрыты богатейшие залежи информации. Из этой книги исследователи, аналитики и разработчики узнают, как извлекать эти уникальные данные, используя код на Python, Jupyter Notebook или контейнеры Docker. Сначала вы познакомитесь с функционалом самых популярных социальных сетей (Twitter, Facebook, LinkedIn, Instagram), веб-страниц, блогов и лент, электронной почты и GitHub. Затем приступите к анализу данных на примере Twitter. Прочитайте эту книгу, чтобы • Узнать о современном ландшафте социальных сетей • Научиться использовать Docker, чтобы легко оперировать кодами, приведенными в книге; • Узнать, как адаптировать и поставлять код в открытый репозиторий GitHub; • Научиться анализировать собираемые данные с использованием возможностей Python 3; • Освоить продвинутые приемы анализа, такие как TFIDF, косинусное сходство, анализ словосочетаний, определение клика и распознавание образов; • Узнать, как создавать красивые визуализации данных с помощью Python и JavaScript. Мэтью Рассел (Matthew Russell) — директор Built Technologies, он возглавляет команду лидеров, работающую над улучшением нашего мира. Вне работы Мэтью рациональный индивидуалист, готовящийся к возможному зомби-апокалипсису. Михаил Классен (Mikhail Klassen) — главный специалист по обработке и анализу данных в Paladin AI, стартапе, занимающемуся адаптивными технологиями обучения. Он увлекается проблемами искусственного интеллекта и анализом данных. Когда Михаил не занят на работе, он любит читать и путешествовать.
Автор Мэтью Рассел, Михаил Классен
Издательство Прогресс книга
Год издания 2020
Переплёт Мягкий
Количество страниц 464
Типографский формат 70х100/16
ISBN 978-5-4461-1246-3
Возрастные ограничения 12+
Высота, см 23,3
Ширина, см 16,5
Толщина 2,1

Написать отзыв